
MT6D: A Moving Target IPv6 Defense
Matthew Dunlop∗† Stephen Groat∗† William Urbanski† Randy Marchany† Joseph Tront∗

∗Bradley Department of Electrical and Computer Engineering
†Virginia Tech Information Technology Security Office

Virginia Tech, Blacksburg, VA 24061, USA
Email: {dunlop,sgroat,urbanski,marchany,jgtront}@vt.edu

Abstract—The Internet Protocol version 6 (IPv6) brings with
it a seemingly endless supply of network addresses. It does not,
however, solve many of the vulnerabilities that existed in Internet
Protocol version 4 (IPv4). In fact, privacy-related crimes in IPv6
are made easier due to the way IPv6 addresses are formed. We
developed a Moving Target IPv6 Defense (MT6D) that leverages
the immense address space of IPv6. The two goals of MT6D
are maintaining user privacy and protecting against targeted
network attacks. These goals are achieved by repeatedly rotating
the addresses of both the sender and receiver. Address rotation
occurs, regardless of the state of ongoing sessions, to prevent an
attacker from discovering the identities of the two communicating
hosts. Rotating addresses mid-session prevents an attacker from
even determining that the same two hosts are communicating.
The continuously changing addresses also force an attacker to
repeatedly reacquire the target node before he or she can launch
a successful network attack. Our proof of concept demonstrates
the feasibility of MT6D and its ability to seamlessly bind new
IPv6 addresses. We also demonstrate MT6D’s ability to rotate
addresses mid-session without dropping or renegotiating sessions.
Since MT6D operates at the network layer of the protocol stack, it
provides a powerful moving target solution that is both platform
and application independent.

Index Terms—moving target defense, IPv6, security, privacy

I. INTRODUCTION

Information compromise is a serious issue for military
communications systems. Due to infrequently changing, or
static, network addresses, an attacker can eavesdrop on infor-
mation exchanges or attack specific hosts. For example, static
nodes are susceptible to Denial-of-Service (DoS), man-in-the-
middle (MITM), replay attacks, and other similar attacks. If an
attacker can disrupt a target user’s availability, time-sensitive
communications could be lost. Similarly, attackers able to
hijack sensitive data exchanges can glean information or even
modify network traffic.

Many security devices exist to defend against these types
of attacks (e.g., firewalls, etc.). No matter how effective
the protection mechanism, an attacker has unlimited time to
attempt to find a weakness if the hosts it protects are static.
Dynamic addressing, on the other hand, limits an attacker’s
time to find a vulnerable attack vector. If an attacker targets
a node, the attack is viable only for the time it takes for the
address to rotate again. Combining dynamic addressing with
current defense in depth strategies provides a powerful moving
target defense that grants an attacker little gain for massive
amounts of effort.

Dynamic addressing also adds privacy and anonymity to
communicating hosts. Since addresses rotate, it is difficult for

attackers to determine the locations and identities of communi-
cating hosts. If addresses rotate often enough, attackers cannot
even piece together enough network traffic to determine what
information is being passed. The problem with implementing a
robust dynamic addressing strategy in IPv4 is that the address
space is small and densely populated. IPv6 solves these issues
by increasing the address size to 128 bits.

Our strategy, the Moving Target IPv6 Defense (MT6D),
leverages the vast address space of IPv6 to implement dynamic
addressing. The remainder of this paper describes the MT6D
protocol. Section II provides the motivation for our work.
The design of MT6D is presented in Section III. Section IV
introduces some implementation possibilities. Other research
related to modifying network addresses, is discussed in Sec-
tion V. Section VI describes the prototype test configuration,
while Section VII presents the analysis and results of our
testing. We discuss some limitations of MT6D in Section VIII.
In Section IX, we discuss future work and conclude.

II. MOTIVATION

We mentioned the threats that can result from information
exposure in Section I. Adoption of IPv6 brings with it new
threats in addition to all the existing Internet Protocol (IP)
threats. For example, StateLess Address AutoConfiguration
(SLAAC) in IPv6 exposes hosts to privacy and anonymity
related attacks. This is especially true with 64-bit Extended
Unique Identifier (EUI-64) addresses that assign a static host
address, or interface identifier (IID), to nodes that remains
static across different subnets. Static IIDs provide third parties
with the ability to globally track users on the Internet [1].
Address tracking is not the only concern. Hosts are also
susceptible to traffic correlation, meaning that a third party can
piece together packets from multiple sessions to map human
users to network traffic. Potentially more damaging is that an
attacker can easily find and attack hosts regardless of where
they connect to the Internet. MT6D was designed to prevent
all of these types of attacks.

Certain network attacks are prevented by MT6D due to
the nature of dynamically rotating network addresses. These
attacks include, but are not limited to, address-based DoS and
MITM attacks. MT6D prevents these attacks by rotating the
addresses an attacker would use to target the victim. Each of
these attacks is accomplished by targeting a specific network
address. When the host address changes, the targeted victim
disappears.

The 2011 Military Communications Conference - Track 3 - Cyber Security and Network Operations

978-1-4673-0081-0/11/$26.00 ©2011 IEEE 1321Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:59:23 UTC from IEEE Xplore. Restrictions apply.

MT6D also preserves hosts’ privacy. This is accomplished
primarily through dynamic obscuration of sender and receiver
addresses. Dynamic obscuration prevents a third party from
pinpointing the identity of either communicating host. Since a
third party cannot identify the host, tracking is prevented. By
tracking, we mean that a third party is capable of pinpointing
the geographic location of a node based on the network it
associates with. The dynamic obscuration of addresses also
prevents network traffic correlation. A third party may be able
to capture a few packets communicated between two unknown
hosts, but not enough to determine the nature of the network
traffic. Since both communicating host addresses can change
multiple times within the course of a single session, a third
party will have difficulty linking previously captured packets
with newly observed packets. To further hide the nature of
network traffic, each packet can optionally be encrypted using
a symmetric key shared by the two communicating hosts. The
incorporation of encryption prevents any third party from using
payload analysis in an attempt to correlate network traffic.
Encrypting packets in this fashion also protects the identities
of hosts when authenticating network traffic.

III. DESIGN

MT6D provides a means for hosts to communicate with
each other over the public Internet while protecting from
targeted network attacks and maintaining anonymity. This
section describes the system design.

A. Key Exchange and Usage
Two hosts using MT6D share a symmetric key for the

purpose of address obscuration and encryption. The most
secure way to generate and exchange symmetric keys is out-
of-band. Symmetric keys can also be generated in-band using
public key encryption. There is a risk that a third party may
observe an in-band exchange, which could tip off a potential
attacker as to the identities of the two communicating hosts.

B. Dynamic Addressing
Dynamic addressing modifies the network and transport

layer addresses of the sender and receiver nondeterministically.
MT6D is capable of dynamically changing these addresses
to hide identifiable information about a host. A key feature
of MT6D is that this obscuration can be made mid-session
between two hosts without causing the additional overhead of
connection reestablishment or breakdown. Changing addresses
mid-session protects communicating hosts from an attacker
being able to collect all packets from a particular session for
the purpose of traffic correlation.

1) Dynamic IID Obscuration: MT6D IIDs are computed
using a host’s EUI-64 IID [2], a shared session key, and a
timestamp. These three values are concatenated and hashed.
The obscured IID is constructed from the leftmost 64 bits of
the hash (bits 0-63) and has the form:

IID′x(i) = H[IIDx||KS ||ti]0→63 (1)

where IID′x(i) represents the obscured IID for host x at
time ti, IIDx represents the unobscured IID of host x, KS

represents the shared symmetric key, and ti represents the
time at instance i. The leftmost 64 bits of the hash value are
denoted by H[·]0→63. The MT6D IPv6 address is then formed
by concatenating the host’s subnet with IID′x(i).

In addition to dynamically obscuring IIDs, ports must also
be obscured. MT6D includes two techniques to dynamically
obscure port numbers. The first technique allows the host to
specify a port range that more closely mimics normal network
traffic. The second technique obscures port numbers using the
unused bits of the hash calculation in Equation 1.

2) Time Incrementation: Time T will increment at ti in-
tervals. The frequency at which ti increments can be no
smaller than twice the single-trip time (2 · STT) of a packet
sent between a sender and receiver. It is necessary to have
ti > (2 ·STT) in order for the sender of the packet to be able
to predict with reasonable accuracy the value of ti when the
receiver receives the packet. By making the minimum rotation
twice the STT , a packet created at the end of the first STT
can be sent using ti. A packet sent within one STT of the next
address rotation will be sent using the ti+1 address. This is to
ensure the packet arrives at the destination using the proper
time required to accurately compute the original addresses.

3) IID Rotation: Hosts using MT6D will rotate to the
next dynamic address at every increment of ti. MT6D uses
Equation 1 to recalculate both the sender and receiver IIDs
of each communicating pair at each time increment . MT6D
will also purge the IIDs for ti−1 to prevent any connection
attempts from malicious third parties. Purging past IIDs also
prevents replay attacks.

4) IID Notification and Lifetime: Each time a host recalcu-
lates its obscured IID, it must notify the local router of its new
IPv6 address so that packets can be properly forwarded. This
notification occurs through the use of the Neighbor Discovery
Protocol (NDP) [3]. The NDP serves two purposes. First,
Neighbor Solicitation and Advertisement Messages verify the
new address does not conflict with a preexisting address on the
subnet by performing Duplicate Address Detection (DAD) [4].
The second purpose is to ensure that the router has the new
MT6D IPv6 address for proper delivery of incoming packets.

At any given time, routers maintain multiple IPv6 addresses
that correlate with a single obscured host. This is beneficial
to minimize packet loss. Future obscured IPv6 addresses are
precalculated and advertised so that routers add the new host
address to their neighbor cache [3] prior to packets arriving
using that address. To accommodate this requirement, host
x will notify the router of IP ′x(i+1) at time ti. Addresses
for previous time increments will be purged from MT6D
tables to prevent replay attempts. Purging must be done at
the host since previously discarded addresses will remain in
the router’s neighbor cache until no response is received after
MAX UNICAST SOLICIT solicitations [3].

The host will store two obscured IPv6 address states. The
two states are IP ′x(i) and IP ′x(i+1). The state IP ′x(i) corre-
sponds to the current computed obscured IPv6 address. This
is considered the active state. The state IP ′x(i+1) corresponds
to the obscured IPv6 address that will be utilized at the next

1322Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:59:23 UTC from IEEE Xplore. Restrictions apply.

time increment. The state at ti+1 is stored but not used until
ti increments to the next time interval. It is precalculated to
verify the validity of IP ′x(i+1) within the subnet prior to time
ti. As already discussed, the state IP ′x(i−1) is purged from
the host. Any packets delayed past the active state will be
discarded and handled according to the appropriate transport
layer protocol of the original packet.

C. MT6D Tunneling

Rather than rewriting each original packet using the ob-
scured addresses, the original packet is encapsulated in a
MT6D tunnel. The benefit of retaining the original packet
is that any established end-to-end connections between the
source and destination are retained. Not only does the appli-
cation of MT6D become transparent to the host, but also the
MT6D connection can have different settings.

A MT6D packet is formed by first overwriting the source
and destination addresses from the original packet. The Ether-
net frame is also overwritten to anonymize the Media Access
Control (MAC) addresses. The entire packet is then prepended
with a new IPv6 header, which we refer to as a MT6D header.
The MT6D header is formed using the dynamically obscured
source and destination addresses discussed in Section III-B.
The MT6D packet is also configured to use a transport layer
protocol that supports connectionless communication.

In our implementation, each packet is encapsulated using the
Unreliable Datagram Protocol (UDP) to prevent Transmission
Control Protocol (TCP) connection establishment and termi-
nation from occurring every time a MT6D address rotates.
Encapsulating packets as UDP has a minimal effect on the
transport layer protocol of the original packet. Since transport
layer protocols are end-to-end, decapsulation will occur before
the host processes the original packet. A session using TCP
will still exchange all required TCP-related information. This
information will simply be wrapped in a MT6D UDP packet.
Any lost packets that were originally TCP will be retransmitted
by the end host after a retransmission timeout occurs.

1) Unencrypted Tunnel: By default, MT6D tunnels the
original packets unencrypted as illustrated in Fig. 1(a). Since
the source and destination addresses are stripped from the
original packet header, address tracking is not feasible. Un-
encrypted tunnels do not prevent traffic correlation since the
remainder of the original headers and payloads stay intact.
Traffic correlation does, however, require deep packet inspec-
tion since any relevant header fields are embedded within the
MT6D packet payload.

The default implementation of MT6D also prevents a num-
ber of network attacks. For example, a host implementing
MT6D is protected against targeted network-layer DoS attacks.
Since source and destination addresses change constantly, an
attacker cannot pinpoint a victim. If an attacker is able to
pinpoint a victim, the duration of the attack is limited by the
address rotation interval.

2) Encrypted Tunnel: MT6D provides the option of en-
crypting each original packet before appending it with the
MT6D header. An example of a MT6D encrypted packet

(a) Unencrypted tunnel

(b) Encrypted tunnel

Fig. 1. Original IPv6 packet encapsulated within a MT6D tunnel.

is shown in Fig. 1(b). By encrypting the original packet, a
third party is unable to glean any useful information from the
packet. For example, if the original packet is sent using TCP,
the header gets encrypted so that a third party cannot attempt
to correlate network traffic using the TCP sequence numbers.
Additionally, the nature of the network traffic is also kept
private through encryption. Encrypted tunnels also provide
authentication privacy by wrapping the original authenticated
packet inside an encrypted MT6D packet. Similar to un-
encrypted tunnels, MT6D using encrypted tunnels provides
protection from targeted network attacks.

D. Architecture

The architecture for a single MT6D host is comprised of an
encapsulator and decapsulator. This architecture is mirrored
by the host at the other end of the MT6D tunnel. Each packet
is transmitted by the sender and sent to an inward-facing
MT6D Network Interface Controller (NIC), which directs all
incoming packets to the MT6D encapsulator.

The MT6D encapsulator transmits all outbound packets.
Upon receipt of a packet, the encapsulator checks to see if
a MT6D profile exists for the sender/receiver pair. The encap-
sulator maintains a table of all valid MT6D destinations that
a sender trusts. These entries are referred to as profiles. Each
profile includes the shared symmetric key that is valid between
the host and each receiver. If no profile exists, the packet is
treated as non-MT6D traffic, also referred to as unsupported
traffic. Unsupported traffic is immediately forwarded to the
nearest gateway device. It is necessary to allow unsupported
traffic to facilitate communication with hosts that do not use
MT6D (e.g., some web servers). Packets that match profiles
have the source and destination network addresses overwritten
in the packet header. They are then checked to see if encryption
is desired. The final step is to pass the packet to the outward-
facing NIC and transmit it.

The MT6D decapsulator receives all inbound packets via
an outward-facing NIC. Each packet is checked for a MT6D
profile. Those packets that do not match profiles are considered
unsupported and delivered immediately to the host. Packets
that match MT6D profiles have the tunnel header stripped off
and are decrypted, if necessary. The source and destination
addresses are rewritten to the original packet header, and the
packet is delivered to the host via the inward-facing NIC.

1323Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:59:23 UTC from IEEE Xplore. Restrictions apply.

(a) MT6D embedded on the
host device in software

(b) MT6D implemented as a stand-alone
gateway device

Fig. 2. MT6D implementation examples

E. Flow

Each MT6D host runs two concurrent processes. One
process controls the generation and advertisement of IPv6
addresses. The other process listens for and handles packets.
Both processes rely on a thread-safe shared memory resource,
which we refer to as the Shared Routing Table (SRT).

We refer to the process that generates and advertises IPv6
addresses as the address obscurer. The address obscurer is used
to supply obscured IPv6 addresses to the SRT. The first step of
the address obscurer is to initialize the SRT. For initialization,
it is necessary to compute and store entries for the current
and next time increments for all sender/receiver profiles. The
MT6D host will also advertise its MT6D source addresses for
each profile entry to the external network using NDP. After the
SRT is initialized, the address obscurer waits for the next time
increment. When ti increments, the current MT6D addresses
are overwritten by the MT6D addresses at ti+1. New MT6D
addresses are then calculated for ti+1 and stored in the SRT.
These new MT6D source addresses are again advertised to the
gateway devices.

The listener process continually listens for packets. Out-
bound packets are sent to the encapsulator for obscuration and
transmission. The encapsulator fetches the MT6D addresses
and symmetric key from the SRT to use in constructing the
MT6D packet. Inbound packets are send to the decapsulator
for processing and transmission. The decapsulator fetches
the original addresses and symmetric key from the SRT and
delivers the packet to the host.

IV. IMPLEMENTATION

The two most common implementations of MT6D are either
as embedded software on the host or as a separate gateway
device. Both implementations adopt a trust model that assumes
trust only between the sender and receiver. In a trust model
where all insiders are trusted, the gateway implementation can
be expanded to the border of a trusted network.

A. Embedded Software

One possible implementation of MT6D is to embed it onto
the host device as illustrated in Fig. 2(a). This option has a
number of advantages. The biggest advantage is mobility. By
hosting MT6D on the host device, MT6D can be implemented
on handheld devices. Another advantage is cost. Since MT6D
is loaded directly onto the host device, there is no requirement
to purchase additional hardware. By having MT6D on the host
device, managing the configuration is also easier. There is no
need to transfer keys or preferences to a separate device.

B. Gateway Device

Implementing MT6D on a separate gateway device, as
shown in Fig. 2(b), is also an attractive option. In this
implementation, MT6D is transparent to the user. This is
especially useful if the user has devices running different
operating systems since it becomes platform independent.
Probably the biggest advantage of implementing MT6D in a
gateway device is that the computational complexity of using
MT6D is offloaded to the MT6D gateway.

As mentioned, MT6D can be implemented on a border
device in a trusted environment. Implementing MT6D in this
fashion mimics a Virtual Private Network (VPN). There
are two benefits to implementing MT6D in this fashion over
the already stated benefits of a gateway implementation.
First, internal hosts can communicate internally without any
performance degradation. Second, network administrators can
manage internal host activities, which would be obscured in a
host-based MT6D implementation.

V. RELATED WORK

There have been other proposals that attempt to obscure
network addresses. There are those that obscure network
addresses for the purpose of privacy and those that obscure
addresses to prevent certain network attacks. We present the
most relevant proposals and discuss how MT6D differs.

A technique by Sheymov [5] was designed with the goal of
dynamically obscuring cyber coordinates. Cyber coordinates
can represent any piece of information in cyber space. Shey-
mov’s objective is to provide intrusion protection from certain
network attacks. MT6D also prevents these attacks, while
providing the additional benefit of anonymity. Sheymov’s
design does not provide anonymity due to the use of the
Domain Name System (DNS) to assign permanent names to
devices. An attacker will have little problem correlating traffic
using hosts’ DNS names. Sheymov also uses a management
unit to distribute addresses. In MT6D, communicating hosts
are able to independently calculate their own addresses.

Fink et al. [6] also proposed a technique for dynamically
obscuring host addresses called Adaptive Self-Synchronized
Dynamic Address Translation (ASD). ASD is similar to MT6D
in that its objective is to hide the location of communicating
hosts. It does this through a handshake process between a
trusted sender and receiver enclave to assign source and des-
tination addresses. An enclave, in its preferred embodiment,
encompasses a subnet. Obscured addresses are selected from
those available to the ASD enclave. MT6D improves upon
ASD by allowing MT6D hosts to communicate without the
need to reauthenticate each time an address rotates. Reau-
thentication minimally gives away the identity of the trusted
enclaves communicating. In MT6D, there is no need for an
authentication handshake to occur, which provides further
protection for communicating hosts.

Two other proposals obscure addresses to achieve
anonymity. The two proposals are privacy extensions [7] and
Cryptographically Generated Addresses (CGAs) [8]. Privacy
extensions were designed with the intent of protecting IPv6

1324Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:59:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. MT6D testbed. The numbers 1-4 indicate measurement points.

addresses that use SLAAC. CGAs were designed to securely
associate IPv6 addresses with public keys for use with the SE-
cure Neighbor Discovery (SEND) protocol. This association
also hides the senders’ addresses. Neither of these schemes
dynamically obscure addresses. Once an address is assigned,
it remains constant, minimally, until the network session
is terminated. A third party monitoring the connection can
accomplish both address tracking and traffic correlation. These
techniques also only obscure the source address. MT6D not
only rotates addresses multiple times within a single session,
but also does so for both the source and destination addresses.

VI. TEST CONFIGURATION

A proof of concept prototype software implementation of
MT6D was developed to prove the validity of the design.
The MT6D prototype was developed using the Python pro-
gramming language. Since the optional packet encryption
has minimal impact on the validity of the design, it was
not implemented in the prototype. The prototype software
was installed on a GuruPlug Server containing a 1.2 GHz
ARM CPU with 512MB DDR2 800MHz RAM running 32-
bit Debian Linux. The GuruPlug also contains two Gigabit
Ethernet NICs, which act as the inward and outward facing
NICs. The configuration used for testing was the gateway
implementation described in Section IV-B. This configuration
supported isolation of the MT6D prototype from the clients. It
also allowed us to verify the MT6D prototype’s ability to pass
and accept network traffic from different operating systems.

Testing was conducted on a production IPv6 network.
Virginia Tech has a fully functional IPv6 network, providing
globally unique addresses through SLAAC to every wireless
and wired node on the network. The production network
provides us with results that account for the effects of actual
network traffic on MT6D packets. The test network is depicted
in Fig. 3. Network monitoring was accomplished by directing
network traffic through two Cisco 2960 Fast Ethernet switches
configured with four SPANs. The four collection points are
illustrated by the numbers 1-4 in Fig. 3. A network moni-
toring machine was configured with four identical NICs to
simultaneously listen to all four SPANs.

Our test scenario was primarily aimed at demonstrating the
functionality of MT6D. For ease of traffic analysis, we set
a static address rotation interval of 10 seconds. To measure
basic functionality, we sent 1000 ping packets from client A
to client B at a rate of one packet per second. To test MT6D
under a high traffic volume of connectionless traffic, we sent
a 10,000-packet ping flood from one client to the other. To
test how MT6D handles connection-oriented traffic, client A

used the Hypertext Transfer Protocol (HTTP) over TCP to
download files ranging from 1KB to 500MB from client B.

VII. ANALYSIS OF RESULTS

We analyze four metrics using the results of the tests
described in Section VI. These metrics are address entropy,
overhead, packet loss, and latency.

A. Address Entropy

Due to changing addresses, MT6D hosts are more difficult
to locate on a subnet than static hosts. This claim can be
supported using Shannon’s explanation of entropy [9]. In terms
of network addresses, the lower the number of addresses there
are on a subnet, the more certain an attacker is of a target host’s
identity. Static addresses never change. Thus, the number of
addresses on a subnet can be represented by h.

Hosts using MT6D generate multiple addresses over time.
The total number of addresses observed can be represented by
hT/∆t where T is the total time MT6D is in operation and
∆t is the time between address rotations. The total observed
addresses increase with the number of active hosts and the
duration MT6D is in operation. Decreasing the address rotation
interval also results in more observed hosts on the subnet. The
greater the host entropy on a network, the more uncertain an
attacker is of locating a target host.

Our results confirm that the MT6D address changing
scheme is feasible for preserving anonymity in IPv6 networks.
During our tests, it was infeasible to locate a specific host
through pinging or scanning from points 2 or 3 on Fig. 3. It
was only possible for us to identify the original payload of a
packet through deep packet inspection of a packet capture.

B. Overhead

The overhead of each MT6D packet is 62 bytes. Since we
do not remove anything from the original IPv6 packet, the
overhead is a result of adding additional headers. The new
IPv6 header incurs 40 bytes. All MT6D traffic is sent via UDP
in our current implementation. The UDP header adds 8 bytes.
The remaining 14 bytes are from the Ethernet frame header.
We were able to verify the 62-byte overhead by observing
captured packets.

C. Packet Loss

The first set of tests we performed were designed to evaluate
MT6D’s ability to pass connectionless traffic. To measure this
we sent 1000 pings from client A to client B at one ping per
second. The packet loss was 2.1%. We then sent a 10,000
packet ping flood to client B and observed 2.6% packet loss.
Analyzing packet loss on captured traffic showed that all
packets lost by a MT6D gateway were lost simultaneously.
We traced the packet loss pattern to address rotations. When
a new address is added to the NIC, the adapter is temporarily
disabled while the operating system (OS) is configured to
accept the new address. While this configuration occurs, all
the packets sent through MT6D are buffered by the kernel.
With the standard ping test, the buffer was no longer able to

1325Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:59:23 UTC from IEEE Xplore. Restrictions apply.

keep up after 95% of the packets had been transmitted. With
the ping flood test, this occurred at approximately 82% of
packets transmitted. Native implementation of MT6D in the
network stack could address this issue. Expanding the kernel
buffer might also address this problem, but would likely result
in increased latency.

The next set of tests were designed to evaluate MT6D’s
ability to pass connection-oriented traffic. We transmitted files
ranging in size from 1KB to 500MB and measured packet
loss. There was no packet loss for files 100KB and below.
This is because the files were small enough to not fill the kernel
buffers. Files greater than 1MB experienced the same group
packet loss that we observed with connectionless traffic. These
lost packets were successfully retransmitted by the endpoints
using TCP, regardless of the number of address rotations.

D. Latency

To measure latency, we calculated the amount of time it
took for packets received by a MT6D gateway at points 1
or 4 to be retransmitted at points 2 or 3, respectively. The
latency incurred during periods where no address rotation
occurred was approximately three milliseconds. During an
address change the latency was greater, approximately 12
milliseconds, due to the temporary disabling of the NIC during
address binding.

The latency added to MT6D-enabled communications can
be traced to three sources. First, the GuruPlug computers
acting as the MT6D gateways are severely underpowered
for the network bridging that they were required to perform
during our tests. Our implementation required that all packets
be decoded and routed in the application’s memory. Second,
Python is an interpreted language and is ill-suited to perform
the kind of real-time network switching that is required by
MT6D. We acknowledge that ultimately MT6D would be best
implemented in a lower-level language or hardware. Finally,
rotating addresses causes the OS to temporarily disable the
NIC and drop packets. Despite the latency experienced during
our tests, large TCP sessions were able to recover seamlessly
during address rotations without any need for the MT6D
device to reconfigure or restart a session. As a case in point,
the 500MB file transfer rotated through over 500 address pairs
without losing the session.

VIII. LIMITATIONS

Despite its strengths, MT6D does have some limitations.
One limitation is that MT6D is designed to operate on an IPv6
network. The concept of address rotation would work in IPv4;
however, the majority of IPv4 subnets do not contain enough
free space to facilitate it. Even if a pool of IPv4 addresses were
reserved for address rotation, it would be statistically feasible
for an attacker to locate a host through simple scanning. An
exhaustive scan of a /16 subnet in IPv4 could be accomplished
by a single host in three hours or less [10].

Other than packet loss described in Section VII, there are
a few scenarios where MT6D could drop packets. The first,
and most likely, scenario is when a packet gets delayed past

the address rotation time. A packet arriving past an address
rotation will be dropped by design. A second issue can occur
if there is an address collision with an advertised address.
The other communicating host has no way of knowing about
this collision. Therefore, all packets sent during the rotation
interval will be dropped. The likelihood of an address collision,
however, is very small. The probability can be written as
Pc = h/264 where Pc represents the probability of a collision
and h represents the number of other hosts on the subnet. To
minimize the number of packets lost in the unlikely event of
an address collision, the address rotation interval can be made
shorter. Reducing the interval between address rotations will
also increase the computational requirement.

IX. CONCLUSION AND FUTURE WORK

Static network addresses pose a security and privacy risk
to network hosts. MT6D solves this problem by presenting
a solution that dynamically rotates addresses, regardless of
the end-to-end connection state. Dynamic addresses prevent
an attacker from tracking a host, conducting network traffic
correlation, and targeting a host for attack. We developed a
proof of concept MT6D prototype that validates the soundness
of our design. Testing was conducted on a production IPv6
network. Our results show that MT6D seamlessly tunnels both
connectionless and connection-oriented network traffic.

The next phase of MT6D development is to optimize the
design and produce a production-ready system capable of
wide-scale deployment. The initial prototype was built to
demonstrate the validity of our dynamic addressing concept
under multiple network traffic scenarios. The production-ready
system will be optimized and include all of the optional
capabilities not required for validity testing.

REFERENCES

[1] M. Dunlop, S. Groat, R. Marchany, and J. Tront, “IPv6: Now you see
me, now you don’t,” in the Tenth International Conference on Networks
(ICN 2011), Jan. 2011.

[2] R. Hinden and S. Deering, “IP Version 6 Addressing Architecture,” RFC
4291 (Draft Standard), Internet Engineering Task Force, Feb. 2006.

[3] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” RFC 4861 (Draft Standard), Internet
Engineering Task Force, Sep. 2007.

[4] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address Auto-
configuration,” RFC 4862 (Draft Standard), Internet Engineering Task
Force, Sep. 2007.

[5] V. I. Sheymov, “Method and communications and communication
network intrusion protection methods and intrusion attempt detection
system,” Patent, Feb. 2010, US 2010/0042513 A1.

[6] R. A. Fink, M. A. Brannigan, S. A. Evans, A. M. Almeida, and S. A. Fer-
guson, “Method and apparatus for providing adaptive self-synchronized
dynamic address translation,” Patent, May 2006, US 7,043,633 B1.

[7] T. Narten, R. Draves, and S. Krishnan, “Privacy Extensions for State-
less Address Autoconfiguration in IPv6,” RFC 4941 (Draft Standard),
Internet Engineering Task Force, Sep. 2007.

[8] M. Bagnulo and J. Arkko, “Cryptographically Generated Addresses
(CGA) Extension Field Format,” RFC 4581 (Proposed Standard), In-
ternet Engineering Task Force, Oct. 2006.

[9] C. E. Shannon, “A mathematical theory of communications,” The Bell
Systems Technical Journal, vol. 27, 1948.

[10] S. Groat, M. Dunlop, R. Marchany, and J. Tront, “Using dynamic
addressing for a moving target defense,” in the 6th International Con-
ference on Information Warfare and Security, Mar. 2011.

1326Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on April 06,2023 at 18:59:23 UTC from IEEE Xplore. Restrictions apply.

