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1
PROCESS AND SYSTEM FOR
ESTABLISHING A MOVING TARGET
CONNECTION FOR SECURE
COMMUNICATIONS IN CLIENT/SERVER
SYSTEMS

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention generally relates to network based
communications and, more particularly, to a system and
method for dynamically establishing a moving target con-
nection by sharing only publically available information.
The invention allows secure communications between many
clients and a server using moving target Internet Protocol
version 6 (IPv6) defense (MT6D). The invention is referred
to as a Client/Server Moving Target IPv6 Defense
(CSMT6D).

Background Description

Network-based moving target defense is a computer secu-
rity technique by which devices on a network are permitted
to change some properties of the network periodically, thus
decreasing the likelihood of targeting by an adversary. In
particular, moving target systems modify the IP address of a
host. The primary limitation of most network based moving
target solutions is that they rely on statically defined pre-
shared information in order to establish connections. This
pre-sharing does not scale when attempting to apply a
moving target defense to a server that is providing services
to a large number of clients. Scaling introduces problems of
logistics and security. Logistically, it is extremely challeng-
ing to distribute and configure static information on a large
number of systems that are distributed across the Internet
without compromising the anonymity and security benefits
of a moving target defense. Scaling a statically configured
moving target defense is also vulnerable to information
leakage, since the attack surface grows as more machines
contain the pre-shared information.

Moving Target IPv6 Defense (MT6D) is a specific imple-
mentation of a network layer moving target defense that was
introduced by researchers at Virginia Tech. MT6D is a proof
of concept implementation that allows two nodes to utilize
a network layer moving target defense while continuing to
maintain open Transport Control Protocol (TCP) sessions.
Two limitations of the original implementation of MT6D are
that the researchers focused solely on peer-to-peer networks
and provided no means to dynamically exchange required
session establishment configuration data.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide
modifications to MT6D that overcome these shortcomings
in order to provide support for the more commonly occur-
ring client/server network connections; e.g., CSMT6D.

More particularly, the present invention overcomes many
of'the issues present in the original design of MT6D by using
a Distributed Hash Table (DHT) as a means to conduct a
blind rendezvous, which allows the secure exchange of
MT6D configuration data. Primarily the invention presents
modifications to the MT6D scheme which allow a single
server to provide services to some large number of clients.
In its preferred embodiment, the invention is a system and
method that leverages the size and distributed nature of the
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2

BitTorrent Distributed Hash Table (DHT) in combination
with a private/public key-pair in order to securely distribute
moving target defense configuration information.

The implementation of this MT6D server, and its ability
to exchange configurations securely and dynamically, pro-
vides additional protections that the original implementation
of MT6D failed to provide. The movement from statically to
dynamically generated configurations ensures that the risk of
compromised passwords and replay attacks are removed as
issues. Additionally, the ability to distribute configuration
files through the DHT eliminates the risk of storing static
configurations locally and provides the capability to distrib-
ute to a much larger audience without the logistical overhead
of manual configurations. Finally, the added dynamism
presented in this paper provides a capability that could be
leveraged to enable moving target defense configuration
changes as the security level of the network fluctuates.

According to another aspect of the invention, there is
provided a system and method that uses cryptographically
strong algorithms to generate a location in the DHT that can
be calculated by two peers using their private and their
peer’s public keys. One of the peers publishes a signed and
encrypted message at that location which includes the infor-
mation required to establish a moving target defense con-
nection. After retrieving the message, the second peer now
has the ability to establish an introduction moving target
session, which will be followed by an addition exchange of
configuration information before moving into a communi-
cation session.

In addition, the invention enables a moving target defense
peer to maintain a large number of sessions with different
peers. In this case, a first peer is referred to as a server and
the others as clients. The Internet today is made up primarily
of client-server relationships, including web and email serv-
ers. By applying the technology of this invention, a server is
permitted to maintain a distinct moving target connection
with up to 15,000 clients in simulations concurrently while
continuing to move itself logically around the network and
avoiding detection from potential adversaries.

The combination of methods introduced by the invention
provides the ability to serve a large number of clients while
improving the security of the connections with clients and
allowing privacy to be maintained. The system and methods
according to the invention overcomes both the logistical and
security based limitations of traditional moving target
defense session establishment schemes. Additionally, the
invention allows dynamic reconfiguration of our moving
target sessions, which could be triggered, based on some
suspected malicious activity on the network. This improves
the privacy and security of the session by permitting flex-
ibility where none existed before.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
will be better understood from the following detailed
description of a preferred embodiment of the invention with
reference to the drawings, in which:

FIG. 1 is an illustration of a network of two hosts using
MT6D;

FIG. 2 is an illustration of a network showing an attack-
er’s view of two hosts using MT6D;

FIG. 3 is the session establishment message sequence
chart in a moving target defense system for client/server
systems according to the present invention;

FIG. 4 is a flow chart showing the process of the server
according to the invention;
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FIG. 5 is a flow chart showing the process of a client
according to the invention;

FIG. 6 is a representation of a standard network setup to
study Neighbor Discovery Protocol (NDP); and

FIG. 7 is a system architecture diagram of an MT6D
server demonstration.

DETAILED DESCRIPTION THE INVENTION

To combat the increasing threat to network security and
privacy, the Information Technology (IT) Security Lab and
the Bradley Department of Electrical and Computer Engi-
neering at Virginia Tech have developed the Moving Target
IPv6 Defense (MT6D) which uses a new form of dynamic
addressing in IPv6 to secure and anonymize network hosts
and their communications. Exploiting the large address
space in IPv6, MT6D rotates network and trasport layer
addresses mid-session to prevent hosts from being targeted
for network attacks and from having their movements and
communications observed.

Static addresses are easy targets for address tracking and
network attacks. IPv6 compounds this vulnerability because
of the way addresses are formed. MT6D prevents attackers
from targeting specific addressees by dynamically rotating
host addresses without impacting preexisting sessions. FI1G.
1 illustrates a network of two hosts using MT6D. The
dynamic addresses are not linked to hosts’ identities, requir-
ing attackers to scan the subnet for targets. FIG. 2 illustrates
an attacker’s view of two hosts using MT6D. The commu-
nicating hosts appear and disappear on seemingly random
addresses. MT6D leverages the immense address space of
IPv6 to provide an environment so large that an efficient
search is infeasible. In the unlikely event that attackers
locate a target, the damage they can inflict is limited to the
interval between address rotations, and reacquiring the tar-
get is infeasible. The moving target defense forces attackers
to use resources not only to attack and to penetrate targets,
but also to constantly find and attempt to require them.

IPv6 stateless address autoconfiguration (SLAAC) is an
automatic addressing scheme that was formalized in RFC
2462 and updated in RFC 4862 that provides a machine with
the ability to generate its own an IPv6 address. Hosts are
permitted to generate their own IIDs by using the Extended
Unique Identifier-64 (EUI-64) format. EUI-64 functions by
splitting the 48-bit Media Access Control (MAC) address in
half and inserting a 16-bit hex value of Oxffee between the
halves of the MAC address. The host also sets bit 7 of the
1ID, which is the universal/local flag, to 1. In order to use a
correct routing prefix and subnet id for their given network,
the host must request this information from their local router
by using Neighbor Discover Protocol (NDP).

NDP is the IPv6 replacement for IPv4’s Address Reso-
Iution Protocol (ARP). It consists of five messages that are
used by routers and hosts in order to determine which other
hosts are on the network around them. In SLAAC, a host
sends a router solicitation message onto the network. The
router will hear this request and respond with a router
advertisement message which contains the first 64-bits of the
IPv6 address that the host will use.

The host now concatenates the router provided network
information with the EUI-64 generated IID resulting in a
unique 128-bit IPv6 address. Since most machines on the
Internet use this same method each time they generate an
address, it is likely that the IID will be the same for a given
interface on a machine. It is also worth remembering that
bits 7 and 25-40 of the IID will always be the same for every
SLAAC generated address in a subnet.
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Moving Target IPv6 Defense (MT6D) was originally
proposed by Dunlop et al. as a specific solution to the
network based moving target defense problem (see, M.
Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tout,
“MT6D a moving target IPv6 defense,” Military Commu-
nications Conference. 2011-MILCOM 2011, 2011, pp. 1321-
1326). MT6D provides security and anonymity on the
network by leveraging the enormity of the IPv6 address
space. Hosts assign themselves new IPv6 addresses at arbi-
trary but pre-determine time intervals and MT6D allows
them to maintain the ability to communicate with each other.
The large number of addresses available within the IPv6
address space gives an almost zero probability that a pair of
randomly selected IPv6 addresses will collide.

The addresses selected for use are generated through the
application of the MT6D algorithm, which uses the
machines’s stateless address autoconfiguration (SLAAC)
generated or statically assigned IPv6 address, a passphrase,
and the current time as inputs. Machines also require the
seed IPv6 address of the host that they will be communi-
cating with via the MT6D connections. With all of the
address generation information available to both hosts,
machines are able to calculate not only their own MT6D
addresses, but also the MT6D addresses of pairs of peers.
Peers periodically rotate addresses based on a current time
window. MT6D then encapsulates the original IP packet
inside of the user datagram protocol (UDP) datagram sent on
the rotating address, allowing transmission control protocol
(TCP) sessions to remain active while addresses are
changed.

The MT6D 11D is generated by using a cryptographically
secure one-way function such as SHA256 to hash the base
1ID, a shared secret key, and the time slot. After hashing,
only the first 64 bits of the digest are used. The MT6D
address for the time slot is then calculated by concatenating
the machine’s original IPv6 subnet information and the
newly calculated IID. The original subnet must stay intact so
that packets can be routed to the correct network. Nodes
must use the scheme in order to calculate addresses for both
themselves and a pre-coordinated peer node. Calculating the
address for a peer node ensures that MT6D packets can be
addressed with ever-changing I1Ds. All configuration infor-
mation is pre-configured statically and each node must know
their peer’s 1ID, the shared secret key, and be using some
means to ensure synchronized time.

One of the essential components of a distributed system is
the ability to establish a secure connection through the use
of a shared key. There are many methods available to share
these keys, including pre-sharing keys and executing a key
exchange. A pre-shared scenario requires that peers wishing
to communicate must agree upon a key and exchange that
key out-of-band before any secure communication is able to
take place. In key exchange scenarios, peers are able to
establish a shared secret key through the use of public key
cryptography. An end-point uses its peer’s public key to
encrypt information that can only be decrypted by using the
peer’s secret key. Other key exchange mechanisms make use
of long-term signing keys to verify the identity of the sender
and the integrity of the message, and use this tamper-proof
channel to exchange portions of a key negotiation resulting
in a shared secret. This ability to exchange secret informa-
tion over an insecure public channel provides easy and
secure distribution capabilities. While this exchange of
information is secure, the encryption protocols used are
relatively inefficient, and should not be used for bulk encryp-
tion. For this reason, a key exchange is used to simply
establish a common secret key that can then be used in a
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more efficient bulk encryption scheme. An example key
exchange solution is the method through which Secure
Socket Layer (SSL) and Transport Layer Security (TLS)
establish a secure session. In SSL/TLS, two machines use
some key exchange method (Diffie-Hellman, Rivest-
Shamir-Adleman (RSA), Elliptic Curve Diffie-Hellman, or
others) to establish a common secret key. This secret key is
then used in some symmetric encryption scheme to encrypt
all data exchanged between the machines. This technique
permits the machines to establish a secure connection with
no pre-shared information, and the key exchange solution
that is used. In the preferred embodiment, the Elliptic Curve
Diffie-Hellman key agreement is used (see, S. Blake-Wilson,
N. Bolyaol, V. Gupta, C. Hawk, and B. Moeller, “Elliptic
Curve Cryptograph (ECC) Cipher Suites for Transport Layer
Security (TLS),” RFC 4492 (Informational), Internet Engi-
neering Task Force, May 2006, updated by RFCs 5246,
7027).

A key component of any distributed system is the ability
to locate peers and establish a shared session. For example,
in the Domain Name System (DNS), a server’s address is
published within the system, and a computer requires only
a Uniform Resource Locator (URL) in order to look the
server up and find its address. DNS is a publicly accessible
service with the ultimate goal of providing the widest
dissemination of addresses. Some applications seek to mini-
mize their visibility on the network in order to provide a
level of secrecy or privacy. Applications that focus on
security and privacy still require some means of locating
peers, but must not rely on systems as widely accessible as
DNS. This method of finding a peer without prior knowl-
edge is called a blind rendezvous and becomes increasingly
difficult as the number of possible locations grows,

An additional feature that is desirable in distributed
systems is the ability for hosts to roam across the network
while remaining connected to the larger system. Roaming is
defined as the ability for some machine on the Internet to
establish connections from any subnet, while still maintain-
ing the ability to locate a resource or be located when
necessary. Roaming differs from network mobility in that
network mobility supports a movement between networks
while maintaining an active connection, where roaming
requires that a host remains in single subnet for the duration
of a session. In DNS, roaming and mobility become chal-
lenging due to the server and cache updates required to
associate a hostname with a machine’s IP address as it
moves from network to network.

The method according to the present invention allows a
machine to privately and securely share its location on the
Internet without requiring direct contact with machines
wishing to establish connections. As part of this solution,
two machines must authenticate against each other to pre-
vent third-party compromise of shared data. It is possible
that location information could be shared between users in
a secure environment before the users and their machines
separate and connect to different parts of the Internet,
although this sharing of static information brings with it
several problems. Static distribution does not scale. If this
information is to be shared with a large number of peers, the
risk of compromise increases with each additional user.
Since the information shared generally relates to network
connectivity and includes an IP address, sharing this infor-
mation statically also precludes the roaming that was dis-
cussed earlier. Another potential solution involves simply
encrypting this information and sharing it on a publicly
accessible single server. While this solution could work, it is
vulnerable to a denial of service attack in which some
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adversary could prevent any of the machines from discov-
ering connectivity information. Additionally, that single
machine becomes a location that an adversary could target
in an attempt to observe the connections from the machines
that wish to remain hidden.

The blind rendezvous scheme according to the invention
is a solution to these problems. This scheme permits private
connection information sharing in a secure, authenticated,
distributed, and dynamic manner. Strong cryptographic
algorithms ensure security and authenticity, a DHT avoids
the risk of a single point of failure, and forcing connection
information to age out ensures only current information is
available as machines move around the Internet, thus
enabling roaming on the network.

One of the largest open distributed systems in use on
today’s Internet is the BitTorrent Distributed Hash Table
(DHT), which is used for establishing connections between
peers in the Peer-to-Peer (P2P) BitTorrent system. BitTor-
rent is a peer-to-peer protocol that is used for file sharing
wherein users distribute the requisite bandwidth of the file
transfer by uploading and downloading portions of a file to
and from each other. Because of this design, a download
with a large number of downloaders can be sustained
without relying on the bandwidth of a single server.

The BitTorrent DHT protocol is based on the Kademlia
DHT presented by Maymounkov and Maziés (see, P. May-
mounkov and D. Mazies. “Kademlia: A peer-to-peer infor-
mation system based on the Xor metric,” Peer-to-Peer
Systems, Springer, 2002, pp. 53-65). Kademlia is a peer-to-
peer DHT where node identities and data keys are both
160-bit opaque values. When a node wants to store a
Key-Value pair in the DHT, they push the value to a node
with an ID which is “close” to the data key based on an XOR
metric. The Kademlia protocol allows nodes to efficiently
learn about peers with addresses closer to the key at which
they are attempting to store or retrieve data.

A preferred embodiment of the present invention makes
use of the BitTorrent Mainline DHT as a mechanism for
storing encrypted information. In 2014, the average daily
number of DHT peers was on the order of 7.5 million
distributed across the Internet in a large number of different
geographical locations. The invention makes use of the
immense size of this peer-to-peer network to provide resil-
ience and suitable cover traffic to ensure the security, reli-
ability, and privacy of the participants in the implemented
protocol.

The BitTorrent protocol specifies several “DHT Queries”
which nodes can use to walk through the Kademlia DHT and
locate the peers currently downloading a specific torrent, and
add themselves to the swarm so that other peers can locate
them. The four queries currently specified and their use is
given in Table 1.

TABLE 1
Query Description
ping A simple ping/pong to establish if a node is
still alive
find__node Used to acquire the contact information
(IP/port) for a node based on its node ID
get_ peers Used to retrieve information about peers in

the swarm for a specific torrent
Used to add oneself to the list of peers in the
swarm for a specific torrent

announce__peer

The present invention leverages the size of the DHT to
conduct a blind rendezvous between nodes. This blind
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rendezvous is defined to mean that two nodes have the
ability to share some information without directly commu-
nicating with each other. Through the use of this approach,
a small amount of information can be shared without
directly communicating with each other. This small amount
of information is exchanged through the DHT and requires
only that peers have access to their peer’s public key
information. According to the preferred embodiment of the
invention, an elliptic curve-based Diffie-Hellman key
exchange and public key cryptography is used in order to
describe a location within the DHT and further application
of public key cryptography to generate a message to store at
that location. Through this means, one node is able to
securely store information that the other node can retrieve in
the future.

The BitTorrent Mainline DHT is an implementation of the
Kademlia DHT algorithm, and as such uses an opaque
160-bit address space for publishing and retrieving infor-
mation. In normal operation, DHT descriptor or “infohash”
is generated by taking the Secure Hash Algorithm 1 (SHA-1)
hash of the value of the info key hash of the .torrent file. In
contrast, the present invention utilizes a keyed hash of time
construction where the key is generated using the Elliptic
Curve Diffie-Hellman (ECDH) function. Specifically, the
preferred embodiment of the invention utilizes the
Curve25519 Diffie-Hellman function (see, D. J. Bernstein,
“Curve25519: new diffie-hellman speed records,” Public
Key Clyptography—PKC: 2006 Springer, 2006, pp. 207-
228).

There are two protocol parameters which need to be
agreed upon prior to deployment:

H—A cryptographically strong hash function with a
digest length of at least 160 bits (e.g., SHA256).
n—The length of the validity period for the descriptor.
The strength of the hash function is dependent on the
computing powers of the devices utilizing the scheme versus
the security requirements. Should an implementer find them-
selves in a situation where high security is required on a low
power device, they would be required to make a decision as
to balance the efficiency against the security of the protocol.
Similarly, the length of n will vary based on the constraints
of the devices and desire for increased security: a longer
period requires fewer computation and network resources,
but creates the a larger window of attack if an adversary is
able to identify the node hosting the DHT message. In a high
risk environment, the implementer may choose to decrease
the length of n in order to force message aging more often.

For two users with public-private keypairs (X,x) and
(Y.y), the shared moving target DHT descriptor d at any time
t within the time window T of length n is generated as:

s=Xy=Y=x
T=t—(t mod »)

dr=H(sl|T)o150

where || denotes concatenation and - denotes scalar multi-
plication over the elliptic curve Curve25519. This descriptor
can be used to publish information which is boxed using the
procedure described below. Both users can generate the
same descriptor, i.e., the location within the DHT, and can
therefore publish and retrieve information through the DHT
under that value. Once time progresses into time period T+1,
a new calculation will be required in order to store and
retrieve information. It is required that some level of time
synchronization be in place between peers in order to ensure
that they move between time periods at nearly the same
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time. In one implementation, the Network Time Protocol
(NTP) is used for time synchronization.

The BitTorrent Mainline DHT was designed to facilitate
trackerless BitTorrent operation. Peers would utilize the
infohash of the torrent they wished to download to locate
other peers downloading that same torrent, and publish their
IP address and port to allow other peers to locate them. This
leads to a very Spartan design where the only data stored
under the infohash descriptor is a list of IPs and 16-bit ports.
Further, the handshake mechanism of retrieving a to ken
value based on the IP address and a changing secret value
makes it impossible or impractible to store data within the
stored IP addresses. The invention provides a simple method
of stuffing data into the port section of the contact info to
allow for exchange of a limited amount of arbitrary infor-
mation.

In order to send a B byte message, generate B unique
random numbers over the interval [0,255] as an ordered list
{Po» P1> - - - P} Then for each byte of the message bit,
generate a 16-bit port as (p;<<8l|b,). Send an announce peer
message to the DHT under infohash d for the current time
interval with that port. This allows the user to send up to
256-byte arbitrary messages to be stored in the DHT for
some interval of time.

Users can use this to send arbitrary data of up to 256 bytes
per 1P address into the DHT. A user should ensure adequate
security of the data should an eavesdropper discover the
DHT descriptor by snooping on Internet traffic between
unsecured nodes. Preferably, the user should make use of
Bernstein’s XSalsa20 stream cipher (see, D. J. Bernstein,
“Extending the salsa20 nonce,” Workshop Record of Sym-
metric Key Encryption Workshop 2011, 2011) and Poly1305
authenticator (see, D. J. Bernstein, “The poly1305-acs mes-
sage-authentication code,” Springer pp. 32-49, 2005) with
keys generated from the Curve 25519 function for descriptor
generation and a nonce based on the generated descriptor d
which fulfills all requirements for XSalso20-Poly1305
nonces. This will result in an overhead of 16 bytes for the
authenticator tag, leaving 240 bytes for the user’s applica-
tion.

Unlike the IPv6 Internet which uses a hierarchical
addressing scheme where portions of the address are
reserved for routing information, the DHT keyspace is flat.
This changes the size of the keyspace from the size of the
subnet (2°%) to the size of the entire address (2'°). This both
improves the security margin by requiring the attacker to
search a much larger address space and side-steps a difficult
problem in the deployment of MT6D: locating the routing
information of the other party.

H, the hashing function used to generate the descriptor
based on a shared secret key and time, must be cryptographi-
cally secure in order to draw some conclusions about the
DHT descriptors that it will generate. The Kademlia DHT
used by BitTorrent defines the closeness of two nodes and
the closeness of a node to an infohash by an XOR metric.
The distance is calculated as: distance (A, B)=IAGBI. The
strong hash function should not permit any relation between
outputs; on average each bit has a 50% probability of
flipping between inputs, therefore it is expected that the
average distance metric between any two descriptors should
be 160/2=80. This ensures that consecutive descriptors are
unlikely to be placed in the same DHT bucket, and are likely
to be stored on very different nodes within the network.
Ideally, messages from any two consecutive time intervals
should be stored on different machines located using almost
completely different lookup paths. The immense size and
churn of the network provides an expectation that the
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protocol will make use of very different portions of the
network. This expectation grows even stronger with the
adoption of DHT Security Extensions, which prevents an
attacker from executing an attack and becoming the DHT
node where a message will be published or has been
published.

This implementation requires that the server generates a
different message for each client, even if each client should
receive the same unencrypted message. This is due to the
fact that the server uses the client’s public key in order to
encrypt the original message. The server generates the DHT
key or descriptor, d. A shared secret is calculated using the
scalar mult(q, n, p) function over the private key of the
server and the public key of the client. This shared secret
value is then concatenated with the current time window, T,
which is then hashed to determine the DHT key for the
current time window, d,. The server publishes the key (d,)
and the encrypted message into the DHT.

The client requests the data from the DHT that the server
put there for it. To do this, the client follows the same steps
that the server took in reverse. First, the client generates d..
by concatenating the shared secret between the client and the
server (generated using the scalar mult(q, n, p) function over
the client’s private key and the server’s public key) and the
time of the current time-interval and hashing it. The client
queries the DHT with d-to discover if there is a current time
interval message from the server waiting. If such a message
exists, the DHT returns the message to the client. If a
message doesn’t exist and the keys have been used correctly,
it is likely that the message has expired and been aged out
of the DHT. If a message was returned from the DHT, the
client decrypts the retrieved cyphertext in order to extract
the contents of the message. At this point, the client can use
the contents of the message to execute some further task,
whether that be beginning the establishment of a moving
target defense connection or establishing a connection to
some hidden service.

The invention brings together the address changing tech-
niques of MT6D and the blind rendezvous scheme. It is
through the combination of these technologies that a net-
work-based moving target defense system gains the capa-
bility to dynamically and securely exchange configuration
information. Exchanging configuration information through
a blind rendezvous technique enables a roaming capability,
an ability to scale, and a dynamism that is not available in
any current moving target defense system and reduces the
amount of pre-shared information to only a public key. This
new scheme relies on the size, resilience, and anonymous
nature of the BitTorrent Distributed Hash Table to improve
security, privacy, and anonymity.

Establishing an MT6D session requires that each endpoint
has the necessary configuration information. Addresses are
calculated by hashing a host’s Extended Unique Identifier-
64 (EUI-64) Interface Identifier (IID), a shared session key,
and a timestamp. The values are concatenated and hashed
using the form:

D', =HUID,|IKd[t:]o—63

where IID', ., represents the MT6D IID for host x at time t,,
1ID, represents the EUI-64 or statically defined IID from
host x, K represents a shared session key, and t, represents
the time at instance i. || denotes concatenation, and H is some
cryptographically strong hashing algorithm with a result
longer than 64 bits, such as SHA256. The first 64 bits of the
hash are then concatenated with the 64-bit network address
of host x, resulting in a complete 128-bit MT6D generated
address.
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While the original implementation of MT6D required a
manual exchange of configuration information and the gen-
eration of a static configuration file to hold the information,
the present invention adds the ability to dynamically gen-
erate this configuration information and share it over the
network in a private but authenticated manner. The move
towards dynamically generated and automatically distrib-
uted configurations helps to overcome limiting factors inher-
ent in the initial design of MT6D. The modifications to
MT6D include a move from a statically defined symmetric
key to a randomly generated key that changes at some
pre-determined interval. Changing the symmetric key
ensures that a captured key is only valid for a short period
of time, thus limiting exposure in the case of a compromise

It is the server’s responsibility to ensure that configuration
data is updated and published to the DHT on a periodic
basis. This time period should be based on the specific
situation in which MT6D is being implemented. In an
environment where there is greater risk to compromise or
attack, the scheme should be tuned to rotate configuration
information more often. This time period, T, is defined as the
beginning of the time window during which a specific
configuration will be valid. T is of some pre-configured
length n. In order to ensure configuration synchronization
between hosts, T is calculated using (now—(now mod n)).
This use of modulo arithmetic in combination with time
forces time windows to begin on regular intervals, thus
ensuring T is the same between hosts. Using T as a com-
ponent within the DHT descriptor also forces the configu-
ration messages to expire periodically.

Publishing information according to the DHT-based blind
rendezvous scheme requires that the server generates a
descriptor for time period T, d,, and a message m. d; is
calculated by the server using the following equation:

dT:H(Spri'C;ub)HDOAHQ

where H is a strong hashing algorithm such as SHA256, S, ,
is the server’s private key, C',,;, is the public key for client
C', and T defines the time period. The server then generates
the message, m, by using the following equation:

m = Nonce || MAC|| Ecimb (Espn. (ENonce(SeedIPc6s || K || Ror)))

where SeedIPv6; is an IPv6 address which is the concat-
enation of the server’s IPv6 subnet and a randomly gener-
ated IID. K is the MT6D symmetric key, Rot is the address
rotation period, and Nonce and MAC are generated by the
encryption algorithms to prevent replay attacks. Notice also
that in the generation of the message, the scheme encrypts
the configuration data with both the server’s private key as
a digital signature and the client’s public key to ensure that
only the client can decrypt the message. The server then
publishes message m using descriptor d, into the DHT for
future retrieval by the client.

The original design of MT6D relied on the idea that both
endpoints have knowledge of their peer’s EUI-64 calculated
1ID, subnet, pre-shared key, and MT6D rotation time inter-
val. The goal of this invention is to improve the protocol by
requiring that as little data as possible be known by each
endpoint prior to connection. By applying the DHT blind
rendezvous scheme to MT6D, no specific network data is
required be known by either endpoint prior to connection.
The blind rendezvous scheme reduces the shared informa-
tion requirement so that only public keys need be shared
between endpoints. Since the server no longer needs prior
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knowledge of the client’s EUI-64 1ID or subnet, and in fact
could not know the specific subnet from which the client
would connect, the scheme cannot use the same methods
applied in the original design of MT6D. Instead, it must use
some values for client subnet and IID that can be known to
all parties. This problem is solved by the generation of the
descriptor. The client’s seed IID is generated as shown in the
following equation:

Cpp=H ((Spn' 'Cpub) 1K) o-63=H ((Spub' Cpri) 1K)o—-63

where (8,5, S,,.) is the public/private key pair of the server,
(Cpuns C,,,0) 1s the public/private key pair of the server, and
K is a key that has been pseudo-randomly generated by the
server and was retrieved by the client from the DHT. Using
this method to generate the seed IID ensures that both
endpoints of the conversation use the same seed information
when calculating MT6D addresses, but ensures that each of
the clients uses a different seed and thus create differing IPv6
addresses.

The client obtains configuration information from the
DHT by querying for the descriptor that is calculated with
H(S,,,"C', D)o 150, Which is the inverse of the server
generated descriptor, but based on the properties of Elliptic
Curve Diffie-Hellman (ECDH) results in the same value.
Upon receipt of message m, the client decrypts and validates
the message using its private key and the server’s public key,
and the nonce provided by that descriptor. As long as there
is a message somewhere in the DHT that is defined by that
descriptor, the client will retrieve it. In the case that the client
requests a descriptor on the boundary between two different
T windows, it may fail to find the current descriptor or will
retrieve expired data. Once it decrypts the data and discovers
that it is expired, it simply searches for a descriptor with the
new T value. T should be measured in minutes or hours, so
the cost of less than a second to query, retrieve, and decrypt
an expired message then re-query, retrieve, and decrypt the
current time period’s message is minimally impactful. Once
decrypted, the retrieved message contains all of the configu-
ration information required to calculate its own MT6D
addresses, namely the key (K), the rotation period (Rot), and
the server’s seed IID (SeedIPv6). Additionally, the client
calculates its own MT6D seed IID with the server’s public
key and its own private key.

In an effort to maintain a level of separation between the
clients that may connect to a common server, separate
MT6D connections are established between each client and
the server. This is as an alternative to having the server
maintain a single MT6D instance that is connected to by all
possible clients. Building the system so that clients all
connect to a single MT6D instance simplifies many of the
session establishment requirements, but reduces the level of
anonymity and privacy that each client enjoys. Maintaining
separate MT6D instances for each client, helps to ensure that
the clients are not able to discover each other on the network
by simply listening to network traffic. In order to success-
fully maintain separate connections, the server is required to
conduct separate MT6D address calculations for each client
connection and bind those addresses to virtual interfaces that
are instantiated upon client request. The establishment of
these separate connections requires some common means of
finding the server on the network, which is accomplished by
maintaining what is referred to as an introduction interface
on the server and publishing the requisite information into
the DHT. The introduction interface is maintained by the
server’s main MT6D process and is monitored for connec-
tion requests coming from clients. Upon receiving a con-
nection request, the server spins up a new MT6D virtual

12

interface that will only exist for the duration of the session

with the given client and is only used for communication

with that client. The invention relies heavily on public key

infrastructure as a means to encrypt and authenticate all of
5 the scheme’s messages. Any session establishment message,
including those published to the DHT, are both signed by the
originator’s private key and encrypted using the intended
recipient’s public key. The combination of these keys pro-
vides an additional layer of protection from man in the
middle and replay attacks.

When the server starts, a number of steps are required to
get it to a steady-state where it is prepared to accept
connections from clients. Because there are multiple event
triggers that must be monitored, the server uses an event
loop library for the maintenance of event timers, traffic
watchers, and signal watchers. Since the server could end up
binding a large number of IPv6 addresses to the physical
Ethernet interface, it registers a SIGINT watcher that
ensures that it can exit gracefully and remove all of the
bound addresses. See Algorithm 1 below. With the signal
watcher in place, the server creates the introduction tunnel
interface, which is used for all session establishment com-
munication. The server assigns this interface a self-gener-
ated IPv6 address that is a concatenation of the 64-bit IPv6
subnet, which was retrieved from the Ethernet interface, and
64 randomly generated bits. The server’s self-assigned
address is referred to as SeedIPv6. This address will be the
destination address of all configuration request messages
coming from any of the clients as they traverse the MT6D
established tunnels. The server also generates a 128-bit
introduction session key, which is used in combination with
the tunnel interface IID for MT6D address generation cal-
culations. With these pieces in place, the server starts two
timers and two watchers. The first timer is used for address
changes according to the MT6D algorithm and defaults to
three seconds. At each timer expiration, the server generates
a new MT6D address for the time period and binds it to the
Ethernet interface. The second timer is used for the rotation
of introduction session configuration information. The
server also generates two input/output watchers that look for
MT6D data inbound from or outbound to the network. The
outbound tunnel interface watcher ensures that traffic that is
destined for an MT6D host is encapsulated in a UDP header
with the current MT6D generated ports. The datagram is
then encapsulated into an IPv6 header with the current time
period’s MT6D generated source and destination IPv6
addresses. The server uses the inbound UDP traffic watcher
to catch any UDP traffic that is inbound from an MT6D host
and arriving addressed to an MT6D IPv6 address and current
MT6D UDP port. This traffic is then routed through the
MT6D process in order to decapsulate the IPv6 packet
which is then passed to the traditional network stack for
processing.
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Once the server has completed its startup procedures and
is in its steady state, it forces an expiration of the configu-
ration publication timer, which triggers the steps presented
below as Algorithm 2.
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As described above, the server generates an introduction
session key during start-up that is applied to the MT6D
address calculations in the main MT6D process. Periodi-
cally, the server re-generates this session key in order to
ensure that only current clients are able to discover configu-
ration information within the DHT. This period is described
as the introduction session configuration period, and is
monitored by the configuration publication timer. At each
timer trigger, which is fifteen minutes by default, the server
executes the steps described in Algorithm 2, shown below.
Simply put, the server generates a new introduction session
key and publishes a new message into the DHT for each of
the registered clients to retrieve. Separate messages are used
for each of the potential clients so that the strength of public
key encryption may be leveraged to ensure that only autho-
rized clients are able to retrieve and decrypt messages. Since
each of these messages is both signed and encrypted, clients
can be certain that messages retrieved from the DHT are for
them and are definitely from the server. A server must have
prior knowledge of all potential clients that may want to
connect to it, which is referred to as registering with the
server. This registration is simply the act of providing the
server some identifying information that allows it to procure
the client’s public key. In the proof of concept implemen-
tation, the server maintains a copy of each client’s public
key in a text-based key store, but in reality would be some
publicly accessible public key infrastructure.

Algorithm 2 Configuration Publication Algorithm

1:  for each configuration time period (T) do
2: Generate introduction key (K)
3: Build/Reconfigure introduction interface
4: for each registered client (C7) do
5: Calculate the descriptor:
dr = H(Spri ) Clpub) 1 T)o 150

6: Randomly generate a message nonce (N)
7: Calculate the message:

m = Nonce || MAC ”ECimb (Espn. (Eponce (SeedIPv6s || K || Rob))
8: Publish m at d in DHT
9: end for
10: end for

In order to fully support the establishment of dynamic
MT6D sessions, development of a session establishment
protocol is required. The protocol is a layer 4 messaging
protocol that uses an IPv6 next header value of 0x254, which
defines experimental protocols. By using a next header value
of 0x254, the machines are able to easily differentiate traffic
on the endpoints as it is received. Currently, only three
possible message types are defined as part of the session
establishment protocol. Message ID 0 is a configuration
request message, message ID 1 is a configuration response
message, and message ID 2 is a session teardown message.
Each message begins with the 8-bit value that is its identi-
fication, and is followed by any other data pertinent to that
message.

The configuration request message is identified as mes-
sage ID 0, and is sent by the client to request a session
configuration from the server, and thus is the message that
begins the entire process of session establishment. Not only
does it begin the session establishment process, but it gives
the client an opportunity to tell the server where it is located
on the Internet, which client it is, and what seed IID it will
use to calculate MT6D addresses. As can be seen below, the

20

25

30

35

40

45

50

55

60

14

configuration request message is a 36-byte message that
consists of an 8-bit message ID, a 24-bit client ID, and two
128-bit IPv6 addresses.

24 32

Msg. ID Client ID

Client Seed IPv6 Address (128 bits)

Client MT6D Tunnel Address (128 bits)

The Configuration Request Message (MSG ID 0)

The first address identifies the seed address that the client
will use in the calculation of MT6D addresses and the
second defines the tunnel address that the client will use in
order to route traffic into the MT6D process.

The configuration response message, identified as mes-
sage ID 1, is sent by the server in response to a configuration
request message. The response message is a 36-byte mes-
sage that consists of an 8-bit message 1D, a 24-bit address
rotation period, a 128-bit tunnel IP address, and a 128-bit
session key. As with the client’s configuration request mes-
sage, the server maintains a tunnel address which is given to
the client to ensure MT6D traffic is routed through the
MT6D tunnel.

0 8 16

Msg. ID

24 32

Address Rotation Period

Session Tunnel IPv6 Address (128 bits)

Session MT6D Key (128 bits)

The Configuration Request Message (MSG ID 1)

The final message that is currently defined is identified as
message 1D 2, and is best described as a session teardown
message. This is the message that is sent by either the client
or the server when it is ready to tear down the current
session. This message is not necessary because of timeouts
that are integrated into both the client and the server, but
sending it helps to close sessions more quickly rather than
waiting for timers to expire. Use of this message not only
helps to save network resources, but also saves computation
resources on the communicating peers by halting MT6D
address calculations earlier.

In an effort to more clearly describe the processes required
for a client to establish a connection with an MT6D server,
a message sequence chart is presented as FIG. 3. Prior to the
first message in the chart being sent by the client, the server
has completed its startup procedures and is now in its steady
state, listening on its introduction interface for configuration
request messages from its registered clients.

When the client is prepared to request a session from the
server, it begins by querying the DHT for introduction
configuration information. The client generates a descriptor.
Based on the properties of Elliptic Curve Diffie-Hellman, the
scheme generates the same shared secret that the server was
able to generate by using the client’s private key and the
server’s public key as shown in the following equation:

dT:H(Spri'C;ub)HDOAHQ

This shared secret is the descriptor that describes the loca-
tion with the DHT at which the server published a message
containing introduction session configuration information
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for the client. Once the client receives the introduction
session configuration message from the DHT, it has suffi-
cient information to locate the MT6D server on the Internet
and begin communication with it.

As shown in FIG. 3, the client’s next step is to use the
introduction session configuration information in order to
instantiate an introduction session interface and begin cal-
culating MT6D addresses for both itself and the server. It
then crafts a configuration request message. The message is
wrapped into a standard IPv6 header that is addressed to the
server’s introduction interface tunnel address which gets
routed through the MT6D process where a UDP header and
MT6D addressed IPv6 header are added on.

Upon receipt, the server builds a client session interface
by instantiating a new tunnel interface, forking a child
process that manages the MT6D address calculations for that
session interface, and activating an event loop that monitors
the interface for any inbound messages. The child process
generates a new session key that is used in the calculation of
MT6D addresses for the session and generates a new tunnel
interface IPv6 address by concatenating the IPv6 subnet
with a randomly generated 64-bit IID. This new address is
bound to the session’s tunnel interface, which will only be
used for communication with a single client for the duration
of the session with that client. Once the tunnel interface has
been created, an address assigned, and MT6D addresses
have begun to be bound to the physical interface, a configu-
ration response message is built and returned to the client.
Upon receipt of the configuration response message, the
client changes its MT6D session key and modifies its routing
tables, ensuring locally originating MT6D traffic is routed
into the tunnel that is destined for the server’s session
interface. The client does not require instantiation of a new
MT6D tunnel interface, as the simple modification of the
session key is sufficient to begin calculating session MT6D
addresses, thus transforming the client’s introduction inter-
face into a session interface

The scheme requires only that the server has access to the
ECDH generated public key for any of the potential clients
that may wish to connect to it. Clients then use their private
key and the server’s public key in order to collect key
configuration information from DHT where the server had
stored it earlier. Maintaining this layer of separation between
clients and server provides benefits that include an inability
to link the client and server based on standard network
communication, which provides a level of anonymity that is
not provided by traditional network services.

Once public keys have been obtained, the scheme pro-
vides a means for a client to determine the configuration
information required to connect to the server by finding a
message that has been left in the DHT by the server. The use
of the DHT gives the server the benefit of both network
mobility and the ability to modify configuration information
periodically. By requiring that the server maintain only a
single introduction interface, the amount of computing
power required by the server and its network footprint are
also reduced. In steady-state, the server maintains only a
single set of three MT6D addresses and a single introduction
tunnel interface.

Finally, the session establishment protocol is the first time
that the server learns of the network location of the client
who wishes to establish a connection. Because the server
does not maintain any private information about the clients,
a compromise of the server’s data does not gain an attacker
any of the clients’ private information. Additionally, the
dynamic configuration establishment provides a means
through which clients can establish a session from any

20

25

30

35

40

45

50

55

60

65

16

subnet rather than only those which had been pre-deter-
mined. This feature provides a sense of network roaming
that is not present in any previous design of MT6D. The only
current requirement is that a client remain in the same subnet
for the duration of the current session, although with the
addition of dynamic re-configuration, a client could poten-
tially begin the reconfiguration process as it transitions from
one subnet to another.

FIGS. 4 and 5 summarize the server and client processes.
Considering first the server process shown in the flow
diagram of FIG. 4, the process begins at 400 with the start
of the server. It is the server’s responsibility to update client
information in the DHT at 401. The server also begins
introduction interface address rotation at 402. Address rota-
tion on introduction interface is, in a preferred embodiment,
every three seconds at 403. The server then listens for traffic
on the introduction interface at 404. When client traffic is
received, the client introduction is validated at 405. If the
client is not validated at 406, the process returns to process
block 404 where the server continues to listen for traffic.
Should the client be validated, the server generates a session
configuration at 407. Once the session configuration has
been generated, the server begins session interface address
rotation at 408. In the preferred embodiment, the address
rotation on the session interface is every three seconds at
409. Once the session interface address rotation has begun
at 408, the server sends session configuration to the client at
410 and continues to listen for traffic at 404. During the
session, the server listens for client traffic on the session
interface at 411. When the session ends, the server termi-
nates the session interface and address rotation at 412.

Next, considering the client process shown in the flow
diagram of FIG. 5, the process starts at 500. The client
begins the session by calculating the DHT descriptor d at
501. Next, the client queries the DHT for d at 502. If the
DHT does not contain the calculated descriptor d, the
process ends at 503. Assuming that the descriptor d is found
in the DHT, the next step in the process is to determine the
introduction configuration at 504. Then, the introduction
interface address rotation is begun at 505. Again, in the
preferred embodiment, the address rotation on the introduc-
tion interface is every three seconds at 506. The client then
sends a session request to the server from the introduction
interface at 507. In process block 508, the client listens for
the server reply on the introduction interface. Upon response
from the server, the client determines the session configu-
ration at 509, and the session interface address rotation is
begun at 510. Again, in the preferred embodiment, the
address rotation on the session interface is three seconds in
512. The session interface is used for server communication
at 513. Once the session is established, the introduction
interface is no longer required and is terminated.

A simulation was scripted in the ns-3 environment to
attempt to bind n addresses to the client node, where n is one
of 100, 500, 1000, 2000, 4000, 8000, 16000, 32000, or
48000. ns-3 automatically assigned IPv6 addresses to the
interface through the wuse of the IPv6Address,
IPv6AddressGenerator, and IPv6AddressHelper classes.
FIG. 6 provides a visual representation of the network setup
used in the simulation after all addresses are bound. Upon
initialization, the router and the client each have only a link
local and IPv6 address assigned to them. The two nodes
exchange their initial neighbor discovery messages, such as
router advertisements and neighbor solicitations immedi-
ately after address assignments.

At 100 seconds of simulation time, ns-3 strips the client
device of'its IPv6 address and begins to bind new and unique
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IPv6 addresses. New address binding is delayed by 100
seconds to ensure that all initialization of the subnet is
complete and the network is stable. Because this study
focuses on the impact on NDP of binding a large number of
addresses, the address used does not matter, so incrementa-
tion is used for address generation rather than fully imple-
menting the MT6D address generation scheme. Addition-
ally, by incrementing addresses rather than calculating them,
address collision avoidance is guaranteed.

After binding addresses, the client node sends a neighbor
solicitation message for each address bound. After the
message is transmitted, the router receives and handles them
according to ns-3 functions implemented in the
ICMPv6L4Protocol class. The total time required to send all
NS messages is then recorded after the successtul receipt of
the final NDP message. To also measure the influence of
bandwidth on this problem, each varying value of n is
simulated with connection speeds of 10 Mbps, 100 Mbps, 1
Gbps, 10 Gbps, and 100 Gbps.

Table 2 shows the results for 16000 and 32000 addresses.
The simulation demonstrates that at speeds of 100 Mbps, 1
Gbps, 10 Gbps, and 100 Gbps address bindings occur within
0.5% of each other when binding the same number of
addresses. On a network of 10 Mbps, the results show that
there is very little impact to time. This same trend was also
observed in all other simulations with different numbers of
addresses. The difference in binding time between the vary-

ing connection speeds remained proportionally the same.
TABLE 2
Bandwidth 16000 Addresses (Seconds) 32000 Addresses (Seconds)
10 Mbps 38.406 76.883
100 Mbps 37.384 74.799
1 Gbps 37.266 74.546
10 Gbps 37.255 74.54
100 Gbps 37.253 74.538

FIG. 7 provides a visual diagram to more easily under-
stand the architecture of the demonstration system. Dotted
lines denote DHT configuration exchange communication
paths. Note that the configuration is generated on the MT6D
server, pushed into the DHT, and retrieved from the DHT by
the MT6D clients. Dashed lines denote MT6D session
establishment and MT6D communication paths. With con-
figurations retrieved from the DHT, the clients have the
ability to establish sessions directly with the MT6D server.
Solid lines denote web traffic. All demonstration triggers are
sent from the web client to either the demonstration web
server or one of the client web servers. Upon receipt, web
servers use shelljs to execute MT6D on their hardware. The
version of MT6D that is running on the MT6D server has
been customized to send data to the primary web server via
http POST. This data includes address calculations and the
status of ongoing connections with each of its respective
clients. The data is then relayed to the web client through a
web socket in the form of small JSON objects. The web
client is then able to display the data in a way that is
meaningful to the user.

While the invention has been described in terms of a
single preferred embodiment, those skilled in the art will
recognize that the invention can be practiced with modifi-
cation within the spirit and scope of the appended claims.
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The invention claimed is:
1. A secure communication network, comprising:
at least one server connected to the network and accessing
a Distributed Hash Table (DHT), the server having a
private and public cryptographic key pair (S,,., S,,»);
a plurality of clients connected to the network and in
communication with the server, each client having a
unique private and public cryptographic key pair (C,
C ub);
the server and a communicating client implementing a
randomly generated key that changes at some prede-
termined interval, the server publishing a descriptor d.-
calculated using the server’s private key S,,, and the
client’s public key C,,, and storing the descriptor d - in
the DHT, and the client querying for the descriptor d,
stored in the DHT to obtain configuration information;
wherein when the server publishes to the DHT, the server
generates a descriptor for time period T, d, and a
message m, where d; is calculated by the server using
the following equation: d;=H(S,,,C,,, Mo 150
where H is a strong hashing algorithm, S,,, is the server’s
private key, C,,;,’ is the public key for client C', and T
defines the time period, and the message, m, is calculated by
using the following equation:

7id

m = Nonce || MAC|| Ei (Esi (SeedIPvos || K || Rot))
pub\ Spri

where SeedIPv6; is an Internet Protocol version 6 (IPv6)
address which is the concatenation of the server’s IPv6
subnet and a randomly generated seed Interface Identifier
(IID), K is a symmetric key, Rot is an address rotation
period, and Nonce and MAC are generated by encryption
algorithms; and

wherein the time period, T, is used as a component within

the DHT descriptor and is varied in duration to provide
the capability to dynamically and securely exchange
configuration information depending on a detected
environment.

2. The secure communication network of claim 1, wherein
the server stores arbitrary piece of data in the DHT that is
retrieved by a client, the server generates a DHT key or
descriptor d and calculates a shared secret using a function
over the private key S, , of the server and the publickey C,,,,
of the client, and when a client requests data from the DHT,
the client generates d, by concatenating the shared secret
between the client and the server generated using a function
over the client’s private key C,,,; and the server’s public key
Spuse

3. The secure communications network of claim 1,
wherein a client’s seed Interface Identifier (IID) is generated
as shown in the following equation:

Cyp=H ((Spri .Cpub)‘ IK)o—s63=H ((Spub 'Cpn') K)o 63

where H is a strong hashing function and K is a key that
has been pseudo-randomly generated by the server and
was retrieved by the client from the DHT, the retrieved
message containing all of the configuration information
required to calculate the client’s own addresses, namely
the key (K), the rotation period (Rot), and a server’s
seed 11D, and the client calculates its own seed 11D with
the server’s public key and its own private key.

4. The secure communication network of claim 1, wherein
the server generates a different message for each client, even
if each client should receive the same unencrypted message,
due to the fact that the server uses the client’s public key in
order to encrypt an original message.
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5. The secure communication network of claim 1, wherein
the DHT is the BitTorrent Distributed Hash Table.
6. The secure communication network of claim 1, wherein
the encryption algorithm used is the Elliptic Curve Diffie-
Hellman (ECDH) algorithm.
7. A method of providing secure communication over a
network, comprising the steps of:
connecting at least one server to the network, the server
accessing a Distributed Hash Table (DHT) and having
a private and public cryptographic key pair (S,,,, S,,,.5);

connecting a plurality of clients to the network so as to be
in communication with the server, each client having a
unique private and public cryptographic key pair (C,
C ub);

impfementing by the server and a communicating client a
randomly generated key that changes at some prede-
termined interval,;

publishing by the server a descriptor d,. calculated using

the server’s private key S,,, and the client’s public key

C, 0
storﬁlg by the server the descriptor d, in the DHT, and
querying by the client for the descriptor d; stored in the

DHT to obtain configuration information;
the step of publishing by the server to the DHT, the step

of publishing including the steps of:
generating by the server a descriptor for time period T, d,

and a message m, where d is calculated by the server
using the following equation:

dT:H(Spri.Cpubi)HDOA 159

where H is a strong hashing algorithm, S,,,, is the server’s
private key, C,,," is the public key for client C’, and T
defines the time period, and
generating by the server the message, m, is calculated by
calculating equation:

%2}

m = Nonce || MAC|| Eqi (ES; (Enoneo(SeedIPv6s || K || Rot)))
pub\ Spri

where SeedIPv6; is an Internet Protocol version 6 (IPv6)
address which is the concatenation of the server’s IPv6
subnet and a randomly generated seed Interface Identifier
(IID), K is a symmetric key, Rot is an address rotation
period, and Nonce and MAC are generated by encryption
algorithms; and
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wherein the time period, T, is used as a component within
the DHT descriptor and is varied in duration to provide
the capability to dynamically and securely exchange
configuration information depending on a detected risk
environment.
8. The method of providing secure communication over a
network of claim 7 further comprising the steps of:
storing by the server stores arbitrary piece of data in the
DHT that is then retrieved by a client;
generating by the server a DHT key or descriptor d
calculating by the server a shared secret using a function
over the private key S, of the server and the public key
C,.» of the client; and
when a client requests data from the DHT, generating by
the client d - by concatenating the shared secret between
the client and the server generated using a function over
the client’s private key C,,,; and the server’s public key
S,
9. T}Ijle method of providing secure communications over
a network of claim 7, further comprising the step of gener-
ating a client’s seed Interface Identifier (IID) by calculating
the following equation:

Cyp=H ((Spri .Cpub)‘ IK)o—s63=H ((Spub 'Cpn') K)o 63

where H is a strong hashing function and K is a key that
has been pseudo-randomly generated by the server and
was retrieved by the client from the DHT, the retrieved
message containing all of the configuration information
required to calculate the client’s own addresses, namely
the key (K), the rotation period (Rot), and a server’s
seed 11D, and the client calculates its own seed 11D with
the server’s public key and its own private key.
10. The method of providing secure communications over
a network of claim 7, further comprising the step of gener-
ating by the server a different message for each client, even
if each client should receive the same unencrypted message,
due to the fact that the server uses the client’s public key in
order to encrypt an original message.
11. The method of providing secure communications over
a network of claim 7, wherein the DHT is the BitTorrent
Distributed Hash Table.
12. The method of providing secure communications over
a network of claim 7, wherein the encryption algorithm used
is the Elliptic Curve Diffie-Hellman (ECDH) algorithm.

#* #* #* #* #*



	United States Military Academy
	USMA Digital Commons
	Spring 3-26-2019

	Process and System for Establishing a Moving Target Connection for Secure Communications in Client/Server Systems
	Chris Morrell
	Reese A. Moore
	Joseph G. Tront
	Randolph C. Marchany
	Recommended Citation


	tmp.1558040886.pdf.K62Fq

